Handling missing weak classifiers in boosted cascade: application to multiview and occluded face detection
نویسندگان
چکیده
We propose a generic framework to handle missing weak classifiers at testing stage in a boosted cascade. The main contribution is a probabilistic formulation of the cascade structure that considers the uncertainty introduced by missing weak classifiers. This new formulation involves two problems: (1) the approximation of posterior probabilities on each level and (2) the computation of thresholds on these probabilities to make a decision. Both problems are studied, and several solutions are proposed and evaluated. Themethod is then applied to two popular computer vision applications: detecting occluded faces and detecting faces in a pose different than the one learned. Experimental results are provided using conventional databases to evaluate the proposed strategies related to basic ones.
منابع مشابه
Multiclass Adaboost and Coupled Classifiers for Object Detection
Building robust and fast multiclass object detection systems is a important goal of computer vision. In the present paper we extend the well-known work of Viola and Jones on boosted cascade classifiers to the multiclass case with the goal of building multiclass and multiview object detectors. We propose to use nested cascades of multiclass boosted classifiers and we introduce the concept of cou...
متن کاملImproving 2D Boosted Classifiers Using Depth LDA Classifier for Robust Face Detection
Face detection plays an important role in Human Robot Interaction. Many of services provided by robots depend on face detection. This paper presents a novel face detection algorithm which uses depth data to improve the efficiency of a boosted classifier on 2D data for reduction of false positive alarms. The proposed method uses two levels of cascade classifiers. The classifiers of the first lev...
متن کاملEmpirical Study of Boosted Weak Classifier in Object Detection Problem
In this paper, we study the use of boosted weak classifiers selected with AdaBoost algorithm in object detection. Our work is motivated by the good performance of AdaBoost in selecting discriminative features and the effectiveness of Classification and Regression Tree (CART) compared with other classification methods. First, we study the cascaded structure of the boosted weak classifier detecto...
متن کاملEmpirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection
Recently Viola et al. have introduced a rapid object detection scheme based on a boosted cascade of simple feature classifiers. In this paper we introduce and empirically analysis two extensions to their approach: Firstly, a novel set of rotated haar-like features is introduced. These novel features significantly enrich the simple features of [6] and can also be calculated efficiently. With the...
متن کاملFace Detection Based on Fuzzy Cascade Classifier with Scale-invariant Features
Viola et al. have introduced a rapid object detection framework based on a boosted cascade of simple feature classifiers. In this paper we extend their work and achieve two contributions. Firstly, we propose a novel feature definition and introduce a feature shape mask to represent it. The defined features are scale-invariant which means the features can be rescaled easily and reduce the perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Image and Video Processing
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013